Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 262: 60-66, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28988031

RESUMO

Valeriana officinalis is a medicinal herb which produces a suite of compounds in its root tissue useful for treatment of anxiety and insomnia. The sesquiterpene components of the root extract, valerenic acid and valerena-1,10-diene, are thought to contribute to most of the observed anxiolytic of Valerian root preparations. However, valerenic acid and its biosynthetic intermediates are only produced in low quantities in the roots of V. officinalis. Thus, in this report, Escherichia coli was metabolically engineered to produce substantial quantities of valerena-1,10-diene in shake flask fermentations with decane overlay. Expression of the wildtype valerenadiene synthase gene (pZE-wvds) resulted in production of 12µg/mL in LB cultures using endogenous FPP metabolism. Expression of a codon-optimized version of the valerenadiene synthase gene (pZE-cvds) resulted in 3-fold higher titers of valerenadiene (32µg/mL). Co-expression of pZE-cvds with an engineered methyl erythritol phosphate (MEP) pathway improved valerenadiene titers 65-fold to 2.09mg/L valerenadiene. Optimization of the fermentation medium to include glycerol supplementation enhanced yields by another 5.5-fold (11.0mg/L valerenadiene). The highest production of valerenadiene resulted from engineering the codon-optimized valerenadiene synthase gene under strong Ptrc and PT7 promoters and via co-expression of an exogenous mevalonate (MVA) pathway. These efforts resulted in an E. coli production strain that produced 62.0mg/L valerenadiene (19.4mg/L/OD600 specific productivity). This E. coli production platform will serve as the foundation for the synthesis of novel valerenic acid analogues potentially useful for the treatment of anxiety disorders.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Sesquiterpenos/metabolismo , Códon , RNA Polimerases Dirigidas por DNA/genética , Eritritol , Fermentação , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Glicerol/metabolismo , Indenos/metabolismo , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Sesquiterpenos de Guaiano , Valeriana/genética , Proteínas Virais/genética
2.
Metallomics ; 8(7): 692-708, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27188213

RESUMO

Mössbauer and EPR spectra of fermenting yeast cells before and after cell wall (CW) digestion revealed that CWs accumulated iron as cells transitioned from exponential to post-exponential growth. Most CW iron was mononuclear nonheme high-spin (NHHS) Fe(III), some was diamagnetic and some was superparamagnetic. A significant portion of CW Fe was removable by EDTA. Simulations using an ordinary-differential-equations-based model suggested that cells accumulate Fe as they become metabolically inactive. When dormant Fe-loaded cells were metabolically reactivated in Fe-deficient bathophenanthroline disulfonate (BPS)-treated medium, they grew using Fe that had been mobilized from their CWs AND using trace amounts of Fe in the Fe-deficient medium. When grown in Fe-deficient medium, Fe-starved cells contained the lowest cellular Fe concentrations reported for a eukaryotic cell. During metabolic reactivation of Fe-loaded dormant cells, Fe(III) ions in the CWs of these cells were mobilized by reduction to Fe(II), followed by release from the CW and reimport into the cell. BPS short-circuited this process by chelating mobilized and released Fe(II) ions before reimport; the resulting Fe(II)(BPS)3 complex adsorbed on the cell surface. NHHS Fe(II) ions appeared transiently during mobilization, suggesting that these ions were intermediates in this process. In the presence of chelators and at high pH, metabolically inactive cells leached CW Fe; this phenomenon probably differs from metabolic mobilization. The iron regulon, as reported by Fet3p levels, was not expressed during post-exponential conditions; Fet3p was maximally expressed in exponentially growing cells. Decreased expression of the iron regulon and metabolic decline combine to promote CW Fe accumulation.


Assuntos
Parede Celular/metabolismo , Compostos Férricos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopia de Mossbauer
3.
Biochemistry ; 54(25): 3871-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26016389

RESUMO

Iron-sulfur (Fe-S) clusters are essential protein cofactors for most life forms. In human mitochondria, the core Fe-S biosynthetic enzymatic complex (called SDUF) consists of NFS1, ISD11, ISCU2, and frataxin (FXN) protein components. Few mechanistic details about how this complex synthesizes Fe-S clusters and how these clusters are delivered to targets are known. Here circular dichroism and Mössbauer spectroscopies were used to reveal details of the Fe-S cluster assembly reaction on the SDUF complex. SDUF reactions generated [2Fe-2S] cluster intermediates that readily converted to stable [2Fe-2S] clusters bound to uncomplexed ISCU2. Similar reactions that included the apo Fe-S acceptor protein human ferredoxin (FDX1) resulted in formation of [2Fe-2S]-ISCU2 rather than [2Fe-2S]-FDX1. Subsequent addition of dithiothreitol (DTT) induced transfer of the cluster from ISCU2 to FDX1, suggesting that [2Fe-2S]-ISCU2 is an intermediate. Reactions that initially included DTT rapidly generated [2Fe-2S]-FDX1 and bypassed formation of [2Fe-2S]-ISCU2. In the absence of apo-FDX1, incubation of [2Fe-2S]-ISCU2 with DTT generated [4Fe-4S]-ISCU2 species. Together, these results conflict with a recent report of stable [4Fe-4S] cluster formation on the SDUF complex. Rather, they support a model in which SDUF builds transient [2Fe-2S] cluster intermediates that generate clusters on sulfur-containing molecules, including uncomplexed ISCU2. Additional small molecule or protein factors are required for the transfer of these clusters to Fe-S acceptor proteins or the synthesis of [4Fe-4S] clusters.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Biocatálise , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Dicroísmo Circular , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Estrutura Molecular , Enxofre/metabolismo , Frataxina
4.
Biochemistry ; 54(22): 3442-53, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26018429

RESUMO

Liquid chromatography was used with an online inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20-40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria, called Mn1100, had a mass of ∼1100 Da and a concentration of ∼2 µM. Mammalian mitochondria contained a second Mn species with a mass of ∼2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ∼580 Da; the concentration of Fe580 in mitochondria was ∼100 µM. When mitochondria were isolated from fermenting cells in postexponential phase, the mass of the dominant LMM Fe complex was ∼1100 Da. Upon incubation, the intensity of Fe1100 declined and that of Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and two other Fe species (Fe2000 and Fe1100) at concentrations of ∼50 µM each. The dominant LMM Zn species in mitochondria had a mass of ∼1200 Da and a concentration of ∼110 µM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ∼5000 Da and a concentration in yeast mitochondria of ∼16 µM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at a concentration of ∼1 µM. Increasing Mn, Fe, Cu, and Zn concentrations 10-fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free glutathione or glutathione disulfide.


Assuntos
Metais/metabolismo , Mitocôndrias Hepáticas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Humanos , Células Jurkat , Metais/química , Camundongos , Mitocôndrias Hepáticas/química , Saccharomyces cerevisiae/química
5.
J Biol Chem ; 290(1): 520-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25371212

RESUMO

The kinetics of dietary iron import into various organs of mice were evaluated using a novel pup-swapping approach. Newborn pups whose bodies primarily contained (56)Fe or (57)Fe were swapped at birth such that each nursed on milk containing the opposite isotope. A pup from each litter was euthanized weekly over a 7-week period. Blood plasma was obtained, and organs were isolated typically after flushing with Ringer's buffer. (56)Fe and (57)Fe concentrations were determined for organs and plasma; organ volumes were also determined. Mössbauer spectra of equivalent (57)Fe-enriched samples were used to quantify residual blood in organs; this fraction was excluded from later analysis. Rates of import into brain, spleen, heart, and kidneys were highest during the first 2 weeks of life. In contrast, half of iron in the newborn liver exited during that time, and influx peaked later. Two mathematical models were developed to analyze the import kinetics. The only model that simulated the data adequately assumed that an iron-containing species enters the plasma and converts into a second species and that both are independently imported into organs. Consistent with this, liquid chromatography with an on-line ICP-MS detector revealed numerous iron species in plasma besides transferrin. Model fitting required that the first species, assigned to non-transferrin-bound iron, imports faster into organs than the second, assigned to transferrin-bound-iron. Non-transferrin-bound iron rather than transferrin-bound-iron appears to play the dominant role in importing iron into organs during early development of healthy mice.


Assuntos
Ferro da Dieta , Organogênese/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Feminino , Ferritinas/química , Ferritinas/metabolismo , Transporte de Íons , Isótopos de Ferro , Ferro da Dieta/metabolismo , Ferro da Dieta/farmacocinética , Rim/química , Rim/metabolismo , Cinética , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Modelos Estatísticos , Miocárdio/química , Miocárdio/metabolismo , Tamanho do Órgão , Espectrofotometria Atômica , Baço/química , Baço/metabolismo , Transferrina/química , Transferrina/metabolismo
6.
Metallomics ; 7(1): 93-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25325718

RESUMO

The iron content of livers from (57)Fe-enriched C57BL/6 mice of different ages were investigated using Mössbauer spectroscopy, electron paramagnetic resonance (EPR), electronic absorption spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). About 80% of the Fe in an adult liver was due to blood; thus removal of blood by flushing with buffer was essential to observe endogenous liver Fe. Even after exhaustive flushing, ca. 20% of the Fe in anaerobically dissected livers was typical of deoxy-hemoglobin. The concentration of Fe in newborn livers was the highest of any developmental stage (∼1.2 mM). Most was stored as ferritin, with little mitochondrial Fe (consisting primarily of Fe-S clusters and haems) evident. Within the first few weeks of life, about half of ferritin Fe was mobilized and exported, illustrating the importance of Fe release as well as Fe storage in liver function. Additional ferritin Fe was used to generate mitochondrial Fe centres. From ca. 4 weeks of age to the end of the mouse's natural lifespan, the concentration of mitochondrial Fe in liver was essentially invariant. A minor contribution from nonhaem high-spin Fe(II) was observed in most liver samples and was also invariant with age. Some portion of these species may constitute the labile iron pool. Livers from mice raised on an Fe-deficient diet were highly Fe depleted; they were devoid of ferritin and contained 1/3 as much mitochondrial Fe as found in Fe-sufficient livers. In contrast, brains of the same Fe-deficient mice retained normal levels of mitochondrial Fe. Livers from mice with inflammatory hepatitis and from IRP2(-/-) mice hyper-accumulated Fe. These livers had high ferritin levels but low levels of mitochondrial Fe.


Assuntos
Hepatite/metabolismo , Proteína 2 Reguladora do Ferro/genética , Ferro , Fígado , Animais , Animais Recém-Nascidos , Feminino , Deleção de Genes , Hepatite/patologia , Ferro/análise , Ferro/química , Ferro/metabolismo , Deficiências de Ferro , Proteína 2 Reguladora do Ferro/metabolismo , Fígado/química , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/patologia , Camundongos
7.
Biochemistry ; 53(24): 3940-51, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24919141

RESUMO

The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) Fe(III) complexes with polyphosphate-related ligands. Some Fe(III) oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS Fe(III). Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 µM Fe(III) citrate) accumulated two major NHHS Fe(II) species as the vacuolar NHHS Fe(III) species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS Fe(II) complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS Fe(III) with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS Fe(III) species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated.


Assuntos
Adenina/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Vacúolos/metabolismo , Adenina/administração & dosagem , Adenina/biossíntese , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Meios de Cultura/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Modelos Biológicos , Ferroproteínas não Heme/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Espectroscopia de Mossbauer
8.
Biochemistry ; 53(18): 2926-40, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24785783

RESUMO

Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.


Assuntos
Proteínas de Transporte de Cátions/química , Ferro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenina/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Simulação por Computador , Citosol/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Manganês/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Ferroproteínas não Heme/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopia de Mossbauer , Vacúolos/metabolismo
9.
Chron Respir Dis ; 11(1): 15-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24431407

RESUMO

In a sample of adults with asthma receiving care and medication in an outpatient pulmonary clinic, this study tested for statistical associations between social problem-solving styles, asthma control, and asthma-related quality of life. These variables were measured cross sectionally as a first step toward more systematic application of social problem-solving frameworks in asthma self-management training. Recruitment occurred during pulmonology clinic service hours. Forty-four adults with physician-confirmed diagnosis of asthma provided data including age, gender, height, weight, race, income, and comorbid conditions. The Asthma Control Questionnaire, the Mini Asthma Quality of Life Questionnaire (Short Form), and peak expiratory force measures offered multiple views of asthma health at the time of the study. Maladaptive coping (impulsive and careless problem-solving styles) based on transactional stress models of health were assessed with the Social Problem-Solving Inventory-Revised: Short Form. Controlling for variance associated with gender, age, and income, individuals reporting higher impulsive-careless scores exhibited significantly lower scores on asthma control (ß = 0.70, p = 0.001, confidence interval (CI) [0.37-1.04]) and lower asthma-related quality of life (ß = 0.79, p = 0.017, CI [0.15-1.42]). These findings suggest that specific maladaptive problem-solving styles may uniquely contribute to asthma health burdens. Because problem-solving coping strategies are both measureable and teachable, behavioral interventions aimed at facilitating adaptive coping and problem solving could positively affect patient's asthma management and quality of life.


Assuntos
Adaptação Psicológica/fisiologia , Asma , Resolução de Problemas/fisiologia , Adulto , Idoso , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Asma/complicações , Asma/psicologia , Asma/terapia , Estudos Transversais , Gerenciamento Clínico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Educação de Pacientes como Assunto/métodos , Qualidade de Vida , Autocuidado/métodos , Autocuidado/psicologia , Ajustamento Social , Inquéritos e Questionários
10.
Biochemistry ; 52(52): 9413-25, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24344915

RESUMO

Fermenting cells growing exponentially on rich (YPAD) medium underwent a transition to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell-growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transition period, the high-affinity Fe import rate declined slower than the cell-growth rate declined, causing Fe to accumulate, initially as Fe(III) oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once the cells had reached slow-growth mode, Fe import and cell-growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during the exponential phase and underwent a transition to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered the stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in the stationary state. Fe initially accumulated as nanoparticles and high-spin Fe(II) species, but vacuolar Fe(III) also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more reactive oxygen species (ROS) damage than younger cells, suggesting that the Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included the import of Fe via a regulated high-affinity pathway and an unregulated low-affinity pathway. The import of Fe from the cytosol to vacuoles and mitochondria and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles accumulate. The lack of regulation of Fe in yeast is perhaps unique compared to the tight regulation of other cellular metabolites. This phenomenon likely derives from the unique chemistry associated with Fe nanoparticle formation.


Assuntos
Ferro/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Meios de Cultura/metabolismo , Cinética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/química
11.
Biochemistry ; 52(45): 7926-42, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24180611

RESUMO

The Fe content of Jurkat cells grown on transferrin-bound iron (TBI) and Fe(III) citrate (FC) was characterized using Mössbauer, electron paramagnetic resonance, and UV-vis spectroscopies, as well as electron and inductively coupled plasma mass spectrometry. Isolated mitochondria were similarly characterized. Fe-limited cells contained ~100 µM essential Fe, mainly as mitochondrial Fe and nonmitochondrial non-heme high-spin Fe(II). Cells replete with Fe also contained ferritin-bound Fe and Fe(III) oxyhydroxide nanoparticles. Only 400 ± 100 Fe ions were loaded per ferritin complex, regardless of the growth medium Fe concentration. Ferritin regulation thus appears to be more complex than is commonly assumed. The magnetic and structural properties of Jurkat nanoparticles differed from those of yeast mitochondria. They were smaller and may be located in the cytosol. The extent of nanoparticle formation scaled nonlinearly with the concentration of Fe in the medium. Nanoparticle formation was not strongly correlated with reactive oxygen species (ROS) damage. Cells could utilize nanoparticle Fe, converting such aggregates into essential Fe forms. Cells grown on galactose rather than glucose respired faster, grew slower, exhibited more ROS damage, and generally contained more nanoparticles. Cells grown with TBI rather than FC contained less Fe overall, more ferritin, and fewer nanoparticles. Cells in which the level of transferrin receptor expression was increased contained more ferritin Fe. Frataxin-deficient cells contained more nanoparticles than comparable wild-type cells. Data were analyzed by a chemically based mathematical model. Although simple, it captured essential features of Fe import, trafficking, and regulation. TBI import was highly regulated, but FC import was not. Nanoparticle formation was not regulated, but the rate was third-order in cytosolic Fe.


Assuntos
Ferro/metabolismo , Células Jurkat/metabolismo , Espectroscopia de Mossbauer/métodos , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Linhagem Celular , Ferritinas/metabolismo , Humanos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
12.
Metallomics ; 5(6): 656-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23598994

RESUMO

Biophysical spectroscopies and LC-ICP-MS were used to evaluate the iron-ome and manganese-ome of mitochondria from Δmtm1 yeast cells. Deleting the mitochondrial carrier gene MTM1 causes Fe to accumulate in mitochondria and Mn superoxide dismutase (SOD2) activity to decline. One explanation for this is that some accumulated Fe misincorporates into apo-Sod2p. Mössbauer spectroscopy revealed that most of the accumulated Fe was Fe(III) nanoparticles which are unlikely to misincorporate into apo-Sod2p. Under anaerobic conditions, Fe did not accumulate yet SOD2 activity remained low, suggesting that the two phenomena are independent. Mn concentrations were two-fold higher in Δmtm1 mitochondria than in WT mitochondria. Soluble extracts from such samples were subjected to size-exclusion LC and fractions were analyzed with an on-line ICP-MS. Two major Mn peaks were observed, one due to MnSod2p and the other to a Mn species with a mass of 2-3 kDa (called Mn2-3). Mn2-3 may deliver Mn into apo-Sod2p. Most Mn in WT mitochondria was associated with MnSod2p, whereas most Mn in Δmtm1 mitochondria was associated with Mn2-3. The [Mn2-3] increased in cells grown on high MnCl2 while the MnSod2p concentration remained unchanged. Corresponding Fe traces showed numerous peaks, including a complex of ~3 kDa which may be the form of Fe that misincorporates, and an Fe peak with the molecular mass of Sod2p that may correspond to FeSod2p. The intensity of this peak suggests that deleting MTM1 probably diminishes SOD2 activity by some means other than Fe misincorporation. A portion of Sod2p in Δmtm1 mitochondria might be unfolded or immature. Mtm1p may import a species required for apo-Sod2p maturation, activity or stability.


Assuntos
Ferro/metabolismo , Manganês/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia Líquida , Compostos Férricos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectroscopia de Mossbauer , Superóxido Dismutase/metabolismo
13.
Metallomics ; 5(3): 232-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23443205

RESUMO

The presence of labile low-molecular-mass (LMM, defined as <10 kDa) metal complexes in cells and super-cellular structures such as the brain has been inferred from chelation studies, but direct evidence is lacking. To evaluate the presence of LMM metal complexes in the brain, supernatant fractions of fresh mouse brain homogenates were passed through a 10 kDa cutoff membrane and subjected to size-exclusion liquid chromatography under anaerobic refrigerated conditions. Fractions were monitored for Mn, Fe, Co, Cu, Zn, Mo, S and P using an on-line ICP-MS. At least 30 different LMM metal complexes were detected along with numerous P- and S- containing species. Reproducibility was assessed by performing the experiment 13 times, using different buffers, and by examining whether complexes changed with time. Eleven Co, 2 Cu, 5 Mn, 4 Mo, 3 Fe and 2 Zn complexes with molecular masses <4 kDa were detected. One LMM Mo complex comigrated with the molybdopterin cofactor. Most Cu and Zn complexes appeared to be protein-bound with masses ranging from 4-20 kDa. Co was the only metal for which the "free" or aqueous complex was reproducibly observed. Aqueous Co may be sufficiently stable in this environment due to its relatively slow water-exchange kinetics. Attempts were made to assign some of these complexes, but further efforts will be required to identify them unambiguously and to determine their functions. This is among the first studies to detect low-molecular-mass transition metal complexes in the mouse brain using LC-ICP-MS.


Assuntos
Encéfalo/metabolismo , Complexos de Coordenação/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Complexos de Coordenação/química , Espectrometria de Massas , Camundongos , Peso Molecular
14.
Biochemistry ; 52(1): 105-14, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23253189

RESUMO

Fermenting cells were grown under Fe-deficient and Fe-overload conditions, and their Fe contents were examined using biophysical spectroscopies. The high-affinity Fe import pathway was active only in Fe-deficient cells. Such cells contained ~150 µM Fe, distributed primarily into nonheme high-spin (NHHS) Fe(II) species and mitochondrial Fe. Most NHHS Fe(II) was not located in mitochondria, and its function is unknown. Mitochondria isolated from Fe-deficient cells contained [Fe(4)S(4)](2+) clusters, low- and high-spin hemes, S = (1)/(2) [Fe(2)S(2)](+) clusters, NHHS Fe(II) species, and [Fe(2)S(2)](2+) clusters. The presence of [Fe(2)S(2)](2+) clusters was unprecedented; their presence in previous samples was obscured by the spectroscopic signature of Fe(III) nanoparticles, which are absent in Fe-deficient cells. Whether Fe-deficient cells were grown under fermenting or respirofermenting conditions had no effect on Fe content; such cells prioritized their use of Fe to essential forms devoid of nanoparticles and vacuolar Fe. The majority of Mn ions in wild-type yeast cells was electron paramagnetic resonance-active Mn(II) and not located in mitochondria or vacuoles. Fermenting cells grown on Fe-sufficient and Fe-overloaded medium contained 400-450 µM Fe. In these cells, the concentration of nonmitochondrial NHHS Fe(II) declined 3-fold, relative to that in Fe-deficient cells, whereas the concentration of vacuolar NHHS Fe(III) increased to a limiting cellular concentration of ~300 µM. Isolated mitochondria contained more NHHS Fe(II) ions and substantial amounts of Fe(III) nanoparticles. The Fe contents of cells grown with excessive Fe in the medium were similar over a 250-fold change in nutrient Fe levels. The ability to limit Fe import prevents cells from becoming overloaded with Fe.


Assuntos
Ferro/análise , Ferro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopia de Mossbauer
15.
Metallomics ; 4(8): 761-70, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22810488

RESUMO

Iron is crucial to many processes in the brain yet the percentages of the major iron-containing species contained therein, and how these percentages change during development, have not been reliably determined. To do this, C57BL/6 mice were enriched in (57)Fe and their brains were examined by Mössbauer, EPR, and electronic absorption spectroscopy; Fe concentrations were evaluated using ICP-MS. Excluding the contribution of residual blood hemoglobin, the three major categories of brain Fe included ferritin (an iron storage protein), mitochondrial iron (consisting primarily of Fe/S clusters and hemes), and mononuclear nonheme high-spin (NHHS) Fe(II) and Fe(III) species. Brains from prenatal and one-week old mice were dominated by ferritin and were deficient in mitochondrial Fe. During the next few weeks of life, the brain grew and experienced a burst of mitochondriogenesis. Overall brain Fe concentration and the concentration of ferritin declined during this burst phase, suggesting that the rate of Fe incorporation was insufficient to accommodate these changes. The slow rate of Fe import and export to/from the brain, relative to other organs, was verified by an isotopic labeling study. Iron levels and ferritin stores replenished in young adult mice. NHHS Fe(II) species were observed in substantial levels in brains of several ages. A stable free-radical species that increased with age was observed by EPR spectroscopy. Brains from mice raised on an Fe-deficient diet showed depleted ferritin iron but normal mitochondrial iron levels.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Ferro/metabolismo , Animais , Encéfalo/embriologia , Espectroscopia de Ressonância de Spin Eletrônica , Ferritinas/análise , Ferritinas/metabolismo , Ferro/análise , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer
16.
Biochemistry ; 51(26): 5276-84, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22726227

RESUMO

The speciation of iron in intact human Jurkat leukemic cells and their isolated mitochondria was assessed using biophysical methods. Large-scale cultures were grown in medium enriched with (57)Fe citrate. Mitochondria were isolated anaerobically to prevent oxidation of iron centers. 5 K Mössbauer spectra of cells were dominated by a sextet due to ferritin. They also exhibited an intense central quadrupole doublet due to S = 0 [Fe(4)S(4)](2+) clusters and low-spin (LS) Fe(II) heme centers. Spectra of isolated mitochondria were largely devoid of ferritin but contained the central doublet and features arising from what appear to be Fe(III) oxyhydroxide (phosphate) nanoparticles. Spectra from both cells and mitochondria contained a low-intensity doublet from non-heme high-spin (NHHS) Fe(II) species. A portion of these species may constitute the "labile iron pool" (LIP) proposed in cellular Fe trafficking. Such species might engage in Fenton chemistry to generate reactive oxygen species. Electron paramagnetic resonance spectra of cells and mitochondria exhibited signals from reduced Fe/S clusters, and HS Fe(III) heme and non-heme species. The basal heme redox state of mitochondria within cells was reduced; this redox poise was unaltered during the anaerobic isolation of the organelle. Contributions from heme a, b, and c centers were quantified using electronic absorption spectroscopy. Metal concentrations in cells and mitochondria were measured using inductively coupled plasma mass spectrometry. Results were collectively assessed to estimate the concentrations of various Fe-containing species in mitochondria and whole cells - the first "ironome" profile of a human cell.


Assuntos
Ferro/metabolismo , Células Jurkat/metabolismo , Mitocôndrias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/metabolismo , Ferritinas/metabolismo , Heme/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Células Jurkat/ultraestrutura , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Oxirredução , Espectroscopia de Mossbauer
17.
Biochemistry ; 50(47): 10275-83, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22047049

RESUMO

Vacuoles were isolated from fermenting yeast cells grown on minimal medium supplemented with 40 µM (57)Fe. Absolute concentrations of Fe, Cu, Zn, Mn, Ca, and P in isolated vacuoles were determined by ICP-MS. Mössbauer spectra of isolated vacuoles were dominated by two spectral features: a mononuclear magnetically isolated high-spin (HS) Fe(III) species coordinated primarily by hard/ionic (mostly or exclusively oxygen) ligands and superparamagnetic Fe(III) oxyhydroxo nanoparticles. EPR spectra of isolated vacuoles exhibited a g(ave) ~ 4.3 signal typical of HS Fe(III) with E/D ~ 1/3. Chemical reduction of the HS Fe(III) species was possible, affording a Mössbauer quadrupole doublet with parameters consistent with O/N ligation. Vacuolar spectral features were present in whole fermenting yeast cells; however, quantitative comparisons indicated that Fe leaches out of vacuoles during isolation. The in vivo vacuolar Fe concentration was estimated to be ~1.2 mM while the Fe concentration of isolated vacuoles was ~220 µM. Mössbauer analysis of Fe(III) polyphosphate exhibited properties similar to those of vacuolar Fe. At the vacuolar pH of 5, Fe(III) polyphosphate was magnetically isolated, while at pH 7, it formed nanoparticles. This pH-dependent conversion was reversible. Fe(III) polyphosphate could also be reduced to the Fe(II) state, affording similar Mössbauer parameters to that of reduced vacuolar Fe. These results are insufficient to identify the exact coordination environment of the Fe(III) species in vacuoles, but they suggest a complex closely related to Fe(III) polyphosphate. A model for Fe trafficking into/out of yeast vacuoles is proposed.


Assuntos
Ferro/análise , Saccharomyces cerevisiae/metabolismo , Vacúolos/química , Transporte Biológico , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/análise , Compostos Férricos/metabolismo , Ferro/metabolismo , Saccharomyces cerevisiae/química , Espectroscopia de Mossbauer , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...